Histamine potentiates N-methyl-D-aspartate receptors by interacting with an allosteric site distinct from the polyamine binding site.

نویسندگان

  • A Burban
  • R Faucard
  • V Armand
  • C Bayard
  • V Vorobjev
  • J-M Arrang
چکیده

Histamine potentiates activation of native and recombinant N-methyl-d-aspartate receptors (NMDARs), but its mechanisms of action and physiological functions in the brain remain controversial. Using four different models, we have further investigated the histamine-induced potentiation of various NMDAR-mediated responses. In single cultured hippocampal neurons, histamine potentiated NMDA currents. It also potentiated the NMDA-induced increase in intracellular calcium in the absence, as well as with saturating concentrations, of exogenous d-serine, indicating both glycine-dependent and glycine-independent components of its effect. In rat hippocampal synaptosomes, histamine strongly potentiated NMDA-induced [(3)H]noradrenaline release. The profile of this response contained several signatures of the histamine-mediated effect at neuronal or recombinant NMDARs. It was NR2B-selective, being sensitive to micromolar concentrations of ifenprodil. It was reproduced by tele-methylhistamine, the metabolite of histamine in brain, and it was antagonized by impromidine, an antagonist/inverse agonist of histamine on NMDA currents. Up to now, histamine was generally considered to interact with the polyamine site of the NMDAR. However, spermine did not enhance NMDA-induced [(3)H]noradrenaline release from synaptosomes, and the potentiation of the same response by tele-methylhistamine was not antagonized by the polyamine antagonist arcaine. In hippocampal membranes, like spermine, tele-methylhistamine enhanced [(3)H]dl-(E)-2-amino-4-propyl-5-phosphono-3-pentenoic acid (CGP39653) binding to the glutamate site. In contrast, spermine increased nonequilibrium [(3)H]5H-dibenzo[a,d]cyclohepten-5,10-imine (dizocilpine maleate; MK-801) binding, and suppressed [(3)H]ifenprodil binding, whereas histamine and tele-methylhistamine had no effect. In conclusion, the histamine-induced potentiation of NMDARs occurs in the brain under normal conditions. Histamine does not bind to the polyamine site, but to a distinct entity, the so-called histamine site of the NMDAR.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zinc and ifenprodil allosterically inhibit two separate polyamine-sensitive sites at N-methyl-D-aspartate receptor complex.

In this study, we investigated the hypothesis that inhibition of the N-methyl-D-aspartate (NMDA) receptor complex by zinc involves a polyamine-sensitive regulatory site. We found that the specific binding of the open channel ligand [3H]MK-801 to rat hippocampal membranes 1) was inhibited by low concentrations of Zn2+ (IC50 = 5.5 microM) by 65%. 2) This high-affinity component of inhibition was ...

متن کامل

N-{4-Chloro-2-[(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)methyl]phenyl}-2-hydroxybenzamide (CPPHA) acts through a novel site as a positive allosteric modulator of group 1 metabotropic glutamate receptors.

Recent studies suggest that a novel positive allosteric modulator (PAM) of the metabotropic glutamate receptor (mGluRs), mGluR5, termed 4-nitro-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (VU-29), potentiates mGluR5 responses by actions at a site that is overlapping with the binding site of 2-methyl-6-(phenylethynyl)pyridine (MPEP), a previously identified negative allosteric modulator of this re...

متن کامل

Subunit-selective allosteric inhibition of glycine binding to NMDA receptors.

NMDA receptors are ligand-gated ion channels that mediate excitatory neurotransmission in the brain and are involved in numerous neuropathological conditions. NMDA receptors are activated upon simultaneous binding of coagonists glycine and glutamate to the GluN1 and GluN2 subunits, respectively. Subunit-selective modulation of NMDA receptor function by ligand binding to modulatory sites distinc...

متن کامل

Structure of the zinc-bound amino-terminal domain of the NMDA receptor NR2B subunit.

N-methyl-D-aspartate (NMDA) receptors belong to the family of ionotropic glutamate receptors (iGluRs) that mediate the majority of fast excitatory synaptic transmission in the mammalian brain. One of the hallmarks for the function of NMDA receptors is that their ion channel activity is allosterically regulated by binding of modulator compounds to the extracellular amino-terminal domain (ATD) di...

متن کامل

Corymine potentiates NMDA-induced currents in Xenopus oocytes expressing NR1a/NR2B glutamate receptors.

Previous studies demonstrated that corymine, an indole alkaloid isolated from the leaves of Hunter zeylanica, dose-dependently inhibited strychnine-sensitive glycine-induced currents. However, it is unclear whether this alkaloid can modulate the function of the N-methyl-D-aspartate (NMDA) receptor on which glycine acts as a co-agonist via strychnine-insensitive glycine binding sites. This study...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 332 3  شماره 

صفحات  -

تاریخ انتشار 2010